N22 – Bonding

VSEPR Shapes, Effects of Lone Pairs, Polarity

Electron Repulsions

Electron Repulsions help determine the shapes and bond angles in molecules.

Linear Geometry

Trigonal Planar Geometry

Tetrahedral Geometry

Trigonal Bipyramidal Geometry

Octahedral Geometry

Octahedral Geometry

The Effect of Lone Pairs

- Lone pair = "occupy more space"
- This affects the bond angles, making the bonding pair angles smaller than expected.
- Pushes the atoms out of the way
- Relative sizes of repulsive force interactions is as follows:

Lowest: Bonding Pair – Bonding Pair Medium: Lone Pair – Bonding Pair Highest: Lone Pair – Lone Pair

Bond Angle Distortion from Lone Pairs

Bond Angle Distortion from Lone Pairs

Polarity of Molecules

For a molecule to be polar it must

1. Have polar bonds.

- Electronegativity difference theory
- Bond dipole moments measured

2. Have an asymmetrical shape.

"Vector addition" – if the polar bonds are equal but opposite direction they cancel out.
Dipoles

Overall

Dipole:

(none)

Polarity of Molecules

Polarity affects the intermolecular forces of attraction.

- Therefore, boiling points and solubility
 - "Like dissolves like"

Non-bonding pairs affect molecular polarity, strong pull in its direction.